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Behaviour of the Mayer cluster sums, b,, for the Ising 
lattice-gas 

D S Gaunt 
Wheatstone Physics Laboratory, King's College, University of London, Strand, London 
WC2R 2LS, UK 

Received 9 May 1978 

Abstract. The high-field polynomials L,  ( U )  (or equivalently the Mayer b,, coefficients) for 
the spin S = $ king model with nearest-neighbour ferromagnetic interactions (or 
equivalently the simple lattice-gas) have been studied for a variety of two and three 
dimensional lattices. We find that ( a )  the leading zero of L.,(u)  on the positive real U axis 
always corresponds to a temperature T I  greater than the critical temperature T,, and 
approaches T, as n +CO like l l n " " ,  where A is the usual gap exponent. In addition, (b) ,  
L , ( u )  appears to have exactly n - 1 zeros in the physical interval (uc ,  1) corresponding to 
T,<TCCO. 

Result ( a )  appears to be rather general since it holds for a variety of other king systems 
including those (I) with longer-ranged interactions, (11) with spin SI$, and (111) on Bethe 
lattices of coordination numbers q = 2 (linear chain) and (IV) q = 3. Result (b) ,  on the 
other hand, is not generally valid when S > i  although it does seem to apply for all the 
other systems studied. 

1. Introduction and summary 

Mayer and his collaborators (see Mayer and Mayer 1940) showed how the pressure of 
an imperfect gas can be expanded either in powers of the activity z or !he density p .  
The expansions are 

m 

p / k T =  1 b,z" 
n = l  

and 

respectively, where the coefficients b, and B, are functions of the temperature T. 
Over the years, the behaviour of the b, and B, coefficients has been the subject of 
much speculation (for example, see Mayer and Mayer 1940, Katsura 1954, 1958, 
1963). Unfortunately, for an interaction potential such as the Lennard-Jones 12-6 
potential, only the first five coefficients have been calculated (Barker et a1 1966). 
Considerably more progress can be made for the simple Ising lattice-gas, where in two 
dimensions between 12 and 25  coefficients are available depending on the lattice, and 
in three dimensions there are between 8 and 17 coefficients. In the hope of throwing 
some light on the universal features of the behaviour of b, and B, coefficients, we 
have made a detailed study of these coefficients. 
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By the Ising/lattice-gas analogy (Lee and Yang 1952), the analogue of the Mayer 
z-expansion for a simple Ising lattice-gas is 

03 

l n A =  1 L, (u)p f l ,  
f l = l  

where In A is the configurational free energy of the simple king model with spin S = 4 
and nearest-neighbour ferromagnetic interactions (Sykes et a1 1965), and cc and U are 
the usual field and temperature variables 

CL = exp(-2mH/kT), U = exp(-4J/kT). (1.4) 

The L, which are the analogues of the b, (or more precisely uf4"b,,, where q is the 
lattice coordination number) are polynomials in U, called the high-field polynomials. 
(For the honeycomb lattice which has an odd coordination number 4 = 3, the variable 
z = U '" is often preferred to u.)  The high-field polynomials have been derived to quite 
high order by the 'code method' using partial generating functions (Sykes et a1 1965, 
1973a,b, 1975). In two dimensions (d = 2), the numbers of polynomials, N, available 
are N = 25, 15 and 12 for the honeycomb (HC), square (sa) and triangular (T) lattices, 
respectively, and in three dimensions (d = 3)  N = 17, 13, 11 and 8 for the diamond 
(D), simple cubic (sc), body-centred cubic (BCC) and face-centred cubic (FCC) lattices, 
respectively. 

The analogue of the Mayer p-expansion (or virial expansion) is not usually studied 
for the Ising ferromagnet but is readily derived by algebraic manipulation from the b, 
(or L,) in the standard manner (see Domb 1974a, for a recent reference). 
Unfortunately, we have found that the B, are lattice dependent and have been unable 
to discern any simple pattern in their behaviour. On the other hand, the b, have a 
rather simple behaviour which we study in detail in the next section. It  turns out that 
for all lattices ( a )  the leading zero of L,(u) on the positive real U axis at U = u l ( n )  
corresponds to a temperature greater than the critical temperature (ul > U,) and 
approaches uc as n +CO like l /n l 'A where A is the usual gap exponent. In addition, 
(b) ,  L,(u) appears to have precisely n - 1 zeros in the physical interval U,< U < 1. 
Both these results are confirmed numerically, and a simple scaling argument is given 
in support of (a) .  In 9 3  we examine the generality of these results by studying a 
variety of other Ising systems. It appears that property (a) is rather general since we 
find the same result for Ising models (I) with further-neighbour interactions, (11) with 
spin S > $, and (111) on Bethe lattices of coordination numbers 4 = 2 (equivalent to the 
linear chain) and (IV) q = 3. Property (b ) ,  however, does not hold for all Ising models 
with S > $ (although it does seem to apply in cases I, 111 and IV) and hence is not quite 
so general. 

2. Simple Ising model 

We have found that the L, (or equivalently the b,) have a rather simple behaviour. 
Apart from a multiple zero at the origin U = 0 which is of no interest, all the known L,  
have exactly n - 1 zeros lying in the physical interval U,< U < 1 (corresponding to 
T, < T < CO) and none in the interval 0 < U < U, (corresponding to 0 < T < T,). The 
proof of this result for arbitrary n is unknown although the result is probably correct. 
The second half of the result implies that all the L, (or b,) are positive for all 



Behaviour of the Mayer cluster sums, b,, for the Ising lattice-gas 1993 

temperatures less than T,. Thc remaining zeros lie either on the negative real axis or 
in the left and right hand halves of the complex u plane. No pattern for the location of 
the non-physical singularities has been discerned. 

As n increases the leading zero on the positive real u axis at u = u l ( n ) >  U, appears 
to approach U ,  monotonically, while the trailing zero at u,-l(n) gets closer to u = 1. 
Indeed the K t h  zero ( K  fixed) at u,(n) apparently approaches U ,  as n increases. 
Presumably in the limit of n + 03 the interval (U,, 1) becomes dense with zeros. 

One of the basic questions is the behaviour of the leading zero u l ( n )  as n +a. A 
general scaling ansatz is 

( u l ( n ) - u c ) / u c -  Cln-e '+Dln-e2+.  . . (2.1) 

where C1 > 0 and O 2  > O1. The exponent 61 can be predicted from scaling theory as 
follows. Since L,(u) is a polynomial, it can be expanded in a Taylor series about U,, 

where ,!,',"'(U,) is the mth derivative with respect to U of L,(u) evaluated at u = U,.  

From standard scaling theory one knows (Gaunt and Domb 1970) that 

(n  +*I (2.3) L',")(U,) - A , ~  - 2 - ( 1 / 8 ) + ( m / A )  

where A ,  is a critical amplitude known to be positive for m = 0, 1, 2 and 3, at least for 
the square and body-centred cubic lattices, 8 is the critical exponent describing the 
shape of the critical isotherm and A is the gap exponent. Hence, we may write 

3c 

(U - udm 
-2-(1/8)+(m/A) 

Ln(u) -  C ( A m / m ! ) n  
m = O  

f ( A m / m  ! ) [ n  "'(U - U,)]" 
- 2 - ( 1 / 8 )  - n  

m=O 

where 

x = n l/*(U - U,). 

Now a zero in L,(u)  for real, positive u is reflected in F ( x )  by a corresponding zero. In 
particular, the zero at u 1  corresponds to a zero in F ( x )  at x = x l ,  say. From (2.5) this 
implies n '/'(ul - uc)=  x 1  or u 1  -U, = xln-"" which on comparison with (2.1) yields 

61 = l / A  (2.6) 

and C1 = x l / u c .  Calculation of  the higher-order terms in (2.1) requires a knowledge of 
the correction-to-scaling terms in (2.3) and these are not known with any certainty 
even when m = 0 (Gaunt and Sykes 1972). 

We have seen that the leading zero u l ( n )  should approach U ,  at an asymptotic rate 
given by (2.1) with an exponent O 1  = l/A. In two dimensions, the best series estimate 
of A (Essam and Hunter 1968) gives 

el = 0.535 * 0.003 d = 2  (2.7) 

which corresponds to a scaling value of A= 0.5333. . . (using y = l z ,  3 p = k and 
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A =  y + P ) .  In three dimensions direct series estimates of A (Essam and Hunter 1968) 
give 

The conjectures y = 1: and P = & (Domb 1974b) give a scaling value of exactly 
8, = 0.64, while the recent renormalisation group values of y = 1.2402 f 0.0009 and 
p = 0.325 f 0.001 (Le Guillou and Zinn-Justin 1977) lead to 8 ,  = 0.6389 f 0.0008. 

To test this prediction numerically, we first calculate estimates O,(n) of el ,  namely 

e l  = 0.640 * 0.001 d = 3 .  (2.8) 

obtained by substituting successive estimates u l ( n )  and ul(n - 1) into (2.1), assuming 
uc to be known (see Domb 1974b) and solving for 8,. These estimates which exhibit 
strong oscillations of period p = 1 (T, FCC), p = 2 ( S a ,  BCC, sc) and p = 4 (HC, D), are 
first smoothed by calculating the averages 

e l ( n , p ) = [ B l ( n ) + 8 1 ( n - 1 ) + .  . . + e l ( n - p + i ) ] / p  

before plotting against l / n .  The plots for two- and three-dimensional lattices are 
shown in figures 1 and 2, respectively, and are consistent with limiting values of 
equal to l / A .  The curves seem to be on the verge of attaining their asymptotic 
approach behaviour which is determined, of course, by the second term on the right 
hand side of (2.1). Inspection of the curves suggests that O 2  - 8, S 1 and D, 2 0 are the 
most likely possibilities. 

0 3  0 2  31 [ 
04 

1 In 

Figure 1. Estimates G , ( n , p )  of 8, plotted against l l n  for d = 2 lattices. The arrow 
indicates the value 8 ,  = l / A  = 0.5333 . . . . 
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Figure 2. Estimates g l ( n , p )  of 8, plotted against l / n  for d = 3 lattices. The arrow 
indicates the value O1 = l / h = @ 6 4 .  The curves labelled 1 to 6 are the BCC(1,2),  
FCC(1, 2), SC(1, 2), BCC(1,2, 3), FCC(1, 2, 3) and s c ( 1 ,  2 ,  3) lattices, respectively. 

To estimate the amplitude C1 we have extrapolated successive estimates of 

using the values O1 = 0.53311 . . . (d = 2) and 8, = 0.64 (d = 3). We find for the two - 

dimensional lattices: 

C1= 5.1 * 0.1 

= 3.25 i 0.05 

= 1*89* 0.02 

and in three dimensions: 

C1= 2.64 * 0.03 

= 1.515 ikO.01 

= 1.055 *0*005 

= 0.672 z t  0.003 (2.10) 
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Since the exponent O 2  in (2.1) is not known, the estimate C, (n )  were extrapolated 
against l / n  (rather than l /neZ-e l )  using n-shifts (Gaunt and Guttmann 1974) to allow 
for any curvature. This should be borne in mind before placing undue weight on the 
confidence limits quoted in (2.9) and (2.10). 

We have also investigated the analogue of (2.1) which uses the temperature T as 
variable rather than U, namely 

( T ~ ( ~ ) - T , ) / T , - C ~ , ~ ~ - ~ ~ + .  . . , (2.11) 

where 
C , ,  = -Cl/ln U,. (2.12) 

It was our hope that the approach to leading asymptotic behaviour would be more 
rapid using the more ‘natural’ T variable. In fact, the converse turns out to be the 
case, Although this is a matter of little consequence in the present instance, it should 
be remembered when a problem which is less well-understood than the Ising model is 
being investigated, particularly if the value of O1 = l / h  is not known with any 
certainty. A second point worth commenting upon is that whereas the amplitudes C1 

appear from (2.9) and (2.10) to be very lattice-dependent, the amplitudes Cr.1 vary 
only slowly with either q for fixed d, or d for fixed q. Thus, we find using (2.9), (2.10) 
and (2.12) 

C , l  = 1.94 * 0.04 (HC), 1.84-0.03 (SQ), 1.72 * 0.02 (T), (2.13) 

and 
C , ,  = 1.78k0.02 (D), 1.71 10.01 (sc), 

= 1.676 iZ 0.008 (BCC), 1.646 iZ 0.008 (FCC). (2.14) 

Some aspects of the preceeding study have been examined previously by Majum- 
dar (1974). However, his work was unsatisfactory in several respects. The main 
defects were as follows: 

(i) Owing to numerical uncertainties associated with his computer program, 
some of the zeros of L , ( u )  lay on the positive real U axis beyond U = 1. Consequently, 
the fact that there are exactly n - 1 zeros in the interval U,< U < 1 was not noticed. 

(ii) Although the leading zero was assumed to obey a formula of the type (2.1), 
the exponent O1 was not shown to be related to the standard critical exponent A .  

(iii) The numerical analysis of (2.1) assumed, without justification, higher-order 
corrections of the form O 2  = 201, O 3  = 301,. . . and was based upon a least-squares 
fitting procedure. Such methods are not, in general, appropriate for this type of 
problem (Gaunt and Guttmann 1974). The estimates of O 1  so obtained were not 
dimensionally invariant nor was this restriction placed upon the fitting procedure. 
Estimates varied between 01 = 0.652 and 0.934 for the two dimensional lattices, and 
between O 1  = 0.356 and 0.648 in three dimensions. 

To conclude this section we return to the scaling arguments and develop them a 
little further. Firstly, it is clear that not only the leading zero but more generally the 
K t h  zero (K = 1 ,2 ,3 ,  . . .)should scale as in (2.1) with the same exponent = l / A  and 
amplitude C,, corresponding to a zero in F ( x )  at x = x, = CKuc.  Secondly, let us 
consider the max-min points of L,(u). Since Ln(0)=L, (u l )=O and L,>O in the 
interval (0, UI), then L,(u) must have at least one maximum in  this interval. In 
practice it appears to have only one maximum which occurs in the interval (uc ,  ul). In 
addition, there will be at least one, and in practice just one, max-min point located 
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between each of the succeeding zeros of L,. At a max-min point L,, 
where from (2.4) we have 

dL,/du =0, 

in - n - 2 - ( 1 / 6 ) + ( l / A )  F ( X ) .  

If P(x)  = 0 (and hence L,, = 0) at the points x = t l ,  x = t 2 ,  . . . then it follows that the 
value of U at any of the max-min points scales with the exponent l/A. 

While ‘horizontal lengths’ of L,(u), such as the location of its zeros or its max-min 
points, scale like l /nl’A, it is not difficult to show that ‘vertical lengths’ scale like 
l/n2+‘”8’. For example, it follows immediately from (2.3) that 

n +*CO. (2.15) 2+(1/6) L n  ( u c ) - A o / n  

In fact, this is essentially the definition of the exponent S since it implies that the 
magnetisation M along the critical isotherm behaves asymptotically ( H  + 0+, p + 1-) 
like (Gaunt and Sykes 1972) 

W 

~ ( u , ,  p )  = 1 - 2 1 nLn ( ~ J P  
n = l  

m - 1 - 2  Aon-1-(1/6) /Ln-E(l-/L)l? 
n = l  

Series analysis of M(u, ,  p ) ,  or equivalently of L,(uc), yields (Gaunt and  Sykes 1972) 

S = 1 5 ~ 0 0 * 0 ~ 0 8  d = 2  

= 5.00 * 0.05 d = 3 .  
(2.16) 

The  central two-dimensional value has subsequently been proved to be exact by 
Abraham (1977). In three dimensions, the scaling relation S = 1 + ( y / B )  gives 6 = 5 
on the basic of y = 1: and /? = & o r  S = 4.816* 0.015 using the renormalisation group 
values quoted previously. 

Other  ‘vertical lengths’ of interest are the magnitudes of L,(u) at their max-min 
points. From (2.4) we see that if there is a max-min point at x = t,, then we should 
expect 

L,  - F(t,)/n’+”’”, i =  1, 2 , 3 , .  . . . (2.17) 

We  have tested this relation numerically for the first maximum of L,(u) and found i t  
to be valid. 

3. Other Ising models 

W e  have also investigated several other Ising systems. In all cases, the leading zero on 
the real, positive U axis at U = ul (n)  lies above uc (U] > U,) and appears to approach uc 
(although in one  case not  monotonically) like l/n”’. The  system studied include: 

I. The S = Ising model with ferromagnetic interactions extending out to the rth 
nearest neighbour sites but all interactions being of equal strength. By restricting 
attention to the so-called ‘equivalent neighbour’ model, the high-field polynomials L,, 
are again a function of a single variable rather than r variables. The  number of 
polynomials available are as follows (Dalton and Wood 1969): in two dimensions, 
N = 6 for the sQ(1, 2 )  and N = 5 for the ~ ( 1 ,  2), sQ(1, 2,  3) and ~ ( 1 ,  2, 3), while in 
three dimensions N = 5 for the sc(1, 2), BCC(1, 2), FCC(1, 2), sc(1, 2, 3) and 
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Bcc(1,2,3), and N = 4 for the Fcc(1,2,3). (The notation indicates over which shells 
the equal interactions extend.) The results for bl(n, 1) are plotted in figures 1 and 2. 
From universality (Griffiths 1970), we expect to find for lattices of a given dimension 
the same value of A (and hence e )  no matter how far the interaction extends, provided 
its range is strictly finite. The curves in both figures, although displaced in the 
direction of increased lattice coordination number, are consistent with such an expec- 
tation. Estimates of C1 obtained by simply extrapolating the last two values of C,(n)  
linearly against l /n are: 

1.29 SQ(1, 2), 0.71 T(1, 2), 0.70 SQ(1, 2, 3), 0-42 T(1, 2, 3) (3.1) 

and 
0.57 BCC(1, 2), 0.41 SC(l,2), 0.41 FCC(1, 2), 

0.27 SC(l,2,3), 0.26 BCC(1, 2, 3) ,  0.15 FCC(1, 2, 3). (3.2) 

These estimates should only be taken as rough guides since the sequences are so short. 
However, they confirm the trend observed in (2.9) and (2.10) that C1 decreases with 
increasing coordination number. 

11. The Ising model with nearest-neighbour ferromagnetic interactions only but 
spin S > 4. Here we have used the data of Fox and Gaunt (1972) which are as follows: 
N =  12 (HC, s =  I), 10 (Sa, s =  I), 7 (T, s =  1, I t ) ,  12 (D, s =  I), 10 (SC, s =  I), 10 
(BCC, S = 1) and 7 (FCC, S = 1, 15). In all of these cases, u l ( n )  exhibits a marked 
odd/even oscillation when plotted against l / n .  The oscillation is so pronounced that 
the approach to U, is no longer monotonic at least for small n. Estimates of fI1 (not 
shown) are rather erratic and we have been unable to extrapolate them reliably 
although they are not inconsistent with el = l / A  as predicted by universality (Griffiths 
1970). For example, using successive averages of 

In[(ul(n -2)- ucY(u l (n ) -  U,)] 

In[n/(n - 2)1 

as smoothed estimates of el ,  we find for the S = 1 simple-cubic lattice 0.649, 0.646, 
0.601, 0.640, 0.606 for n = 6 to 10, respectively. Assuming el  = l/A, the following 
estimates of C1 were obtained: 

c1= 1.83 f 0.12 (HC, s = I), 1.15*0.05 (sa, S =  l), 

0.69 * 0.05 (T, S = l), 0.375 f 0.05 (T, S = 1;) (3.3) 
and 

C1 = 1.06 * 0.03 (D, s = I), 0.64 * 0-02 (SC, S = l), 

0.45 f 0.02 (BCC, S = l), 0.27 f 0.03 (FCC, S = l ) ,  

0.15 f 0.05 (FCC, S = 14). (3.4) 
It is seen that for S = 1 as for S = i, C1 decreases with increasing coordination number 
and that for a given lattice, C1 decreases with increasing S. 

I11 and IV. The S = f Ising model with nearest-neighbour ferromagnetic inter- 
actions only on Bethe lattices of coordination numbers q = 2 (111) and q = 3 (IV). The 
q = 2 lattice is equivalent to the Ising linear chain. For both these problems, Joyce 
(private communication) has proved rigorously that the leading zero approaches the 
critical point like l /n l ’A and has calculated the amplitude C1 exactly. For the q = 3 
lattice, A = l;, the classical or mean field value. The linear chain (q = 2 case) must be 
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treated rather differently from the other problems we have considered, since the 
critical temperature is at T = T, = 0 and the exponent A cannot be defined in the usual 
way. Instead one uses the fact that A also dictates the rate at which the Yang-Lee 
zeros (Lee and Yang 1952) on the unit circle Ipl= 1 pinch-down onto the real positive 
p axis as T -$ Tc+. Denoting the critical angle by B,(T) one has in general (Suzuki 
1967) 

Bc ( T )  - O( T - T,)’, (3.5) 

e,(T)- OT’”, T+O+ (3.6) 

T + Tc+. 

For the Ising chain it  is well known (Lee and Yang 1952) that 

giving A = $ .  For both these problems, Joyce (private communication) has also cal- 
culated the high-field polynomials through L30.  In figure 3 we have plotted values of 
( J l ( n ,  I ) - -A- ’ )  against l / n .  As n +CO,  the curves, which are very smooth, extrapolate 
accurately to zero from opposite directions; the implications for (2.1) are that D1 > 0 
for q = 3 and D1 < 0 for q = 2. In the q = 3 case the curve approaches its limit with an 
infinite slope implying B 2 - 0 1  < 1 in (2.1), which is not unreasonable since el =f. In 
the q = 2 case, however, the curve appears to approach zero with zero slope implying 
B2 - el > 1, again a not unreasonable result since el = 2. 

The generality of the l / n  ”’ result is not too surprising since we would expect the 
scaling argument presented in 8 2  to hold without modification for all the above 
systems save the linear chain. Our observation for the simple Ising model that L,  has 
exactly n - 1 zeros in the physical interval (U,, 1) is slightly less general since it does 

1 / n  

Figure 3. (&(n, l ) - A - ’ )  plotted against I/n (n 
numbers q = 2 (linear chain) and q = 3. 

30) for Bethe lattices of coordination 
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not hold in I1 above. O n  the other hand, it does hold for all the other cases 
considered. Indeed in cases I11 and IV, Ln has no other zeros except the n - 1 lying in 
this interval. 

Returning to case 11, we mention the strong possibility that the n - 1 rule exists in a 
slightly modified form. Suppose S = 1, for example, and one  is prepared to classify 
perturbations from the ordered state ( S ,  = +1, say) according to whether S,  = 0 or 
S,  = -1. Then, if there are n perturbed spins in all, r of which have S,  = -1 and n - r  
have S,  = 0, one  may write (Fox and Gaunt 1972) 

where v = k 2 .  A pilot study for the S = 1 body-centred cubic lattice suggests that the 
polynomials l , ,n - r (u)  have precisely n - 1 zeros in the interval (ucr 1). However, we 
have not thought it worthwhile t o  pursue this idea until such a time as the significance 
of the n - 1 rule becomes clear. 
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